Convergence from Approximating Subspaces

FRANK DEUTSCH

Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802.

AND

EITAN LAPIDOT

44A Eder Street, Haifa, Israel Communicated by E. W. Cheney Received July 25, 1980

1. INTRODUCTION

Curtis [3] has considered the following problem. For each positive integer n, let E_n be a finite subset of the closed interval [-1, 1] containing at least n points. For each real-valued continuous function x on [-1, 1], let $P_n(x)$ denote the unique polynomial of degree at most n-1 which best approximates x uniformly over the set E_n . Letting $||x|| = \sup\{|x(t)| | -1 \le t \le 1\}$, Curtis's main theorem states that the following two conditions are equivalent:

(1) $||x - P_n(x)|| \to 0$ for each x continuous on [-1, 1];

(2) There exists a constant K such that, for each n = 1, 2, ..., if p is polynomial of degree at most n-1 and $|p(t)| \leq 1$ for all $t \in E_n$, then $||p|| \leq K$.

A classical result of Faber [6] states that if each E_n contains exactly n points, then (1) fails for some x. Curtis [3; Theorem 1] shows that (1) also fails if each E_n contains at most n + 1 points. On the other hand, a result of Bernstein [1; pp. 55–57] states that if $\lambda > 1$ is fixed and $m_n > \lambda n$ for every n, then a sequence (E_n) of subsets of [-1, 1], with E_n containing m_n points, can be chosen so that (2) is satisfied.

It is the purpose of this note to present a generalization of Curtis's theorem to an arbitrary Banach space setting (Theorem 2.5). It is interesting to note that this theorem is a type of "uniform boundedness" principle, except that is applies to a certain sequence of (generally *nonlinear*) metric

projections. One consequence of this result is the Erdös-Turán Theorem [5] which states that a certain sequence of interpolating polynomials to a given continuous function on [0, 1] converges, in the L_2 -norm, to the function (Example 2.9). In Section 3, a variant of Theorem 2.5 is established (Theorem 3.1). This theorem is also related to one of Kripke [7] which states that to find a best approximation from a finite dimensional subspace of a normed linear space X to a given element in X, it is possible to replace this by the (often easier) problem of finding best approximations relative to a sequence of seminorms $\|\cdot\|_k$ on X with $\|\cdot\|_k \to \|\cdot\|$. Several examples are given to show that the hypotheses in Theorem 3.1 cannot be dropped.

2. A CONVERGENCE THEOREM

In this section, unless otherwise stated, we assume the following hypotheses:

(i) X is a normed linear space;

(ii) (M_n) is an increasing sequence of finite dimensional subspaces of X;

(iii) (Γ_n) is a sequence of finite dimensional subspaces of the dual space X^* ;

(iv) for each positive integer n, a seminorm on X is defined by

$$||x||_n = \sup\{|f(x)| \mid f \in \Gamma_n, ||f|| \le 1\};$$

(v) each M_n is $\|\cdot\|_n$ -Chebyshev, i.e., for each $x \in X$ there is a unique point $P_n(x) \in M_n$ such that

$$||x - P_n(x)||_n = d_n(x) \equiv \inf\{||x - y||_n \mid y \in M_n\}.$$

The mapping $x \mapsto P_n(x)$ is called the metric projection onto M_n relative to the seminorm $\|\cdot\|_n$. It is easy to verify that P_n is homogeneous, additive modulo M_n , and idempotent (i.e., $P_n(\alpha x) = \alpha P_n(x)$, $P_n(x + y) = P_n(x) + y$ for all $x \in X$, $y \in M_n$, and $P_n^2 = P_n$), but P_n is not linear in general. The norm of P_n is defined by

$$||P_n|| = \sup\{||P_n(x)|| \mid x \in X, ||x|| \le 1\}.$$

By the homogeneity of P_n , it follows that $||P_n(x)|| \le ||P_n|| ||x||$ for every x.

2.1. LEMMA. The seminorm $\|\cdot\|_n$ is actually a norm on M_n . That is, $y \in M_n$ and $\|y\|_n = 0$ implies y = 0.

Proof. Suppose $||y||_n = 0$ for some $y \in M_n$. Then

$$||x - (P_n(x) + y)||_n \leq ||x - P_n(x)||_n + ||y||_n = ||x - P_n(x)||_n.$$

By uniqueness of best approximations, $P_n(x) + y = P_n(x)$, i.e., y = 0.

The next lemma is another way of stating that each mapping P_n is an "open mapping" with the same "openness constant" (viz. 2).

2.2. LEMMA. For each positive integer n and each $y \in M_n$ with $||y||_n \leq 1$, there exists an $x \in X$ with $||x|| \leq 2$ and $P_n(x) = y$.

Proof. Given $y \in M_n$ with $||y||_n \leq 1$, define $G = G_y$ on Γ_n by

$$G(f) = f(y) \qquad (f \in \Gamma_n).$$

Then G is linear and

$$\sup_{\substack{f \in \Gamma_n \\ \|f\|=1}} |G(f)| = \sup_{\substack{f \in \Gamma_n \\ \|f\|=1}} |f(y)| = \|y\|_n \leq 1.$$

Thus $G \in \Gamma_n^*$ and $||G|| \leq 1$. By the Hahn-Banach theorem G has a normpreserving extension (also denoted by G) in X^{**} . Since Γ_n is finite dimensional, Helly's theorem (see, e.g., [4; pp. 86, 87]) implies that there is an $x \in X$ with f(x) = G(f) for $f \in \Gamma_n$, and $||x|| \leq ||G|| + 1 \leq 2$. Hence

$$f(x - y) = f(x) - f(y) = G(f) - G(f) = 0$$

for all $f \in \Gamma_n$. Thus $||x - y||_n = 0$ and hence $y = P_n(x)$.

From Lemma 2.1 and the fact that all norms on a finite dimensional space are equivalent, it follows that there is a constant K_n such that

$$\|y\| \leqslant K_n \|y\|_n \qquad (y \in M_n).$$

The next result gives a condition equivalent to when a *single* constant works for every n.

2.3. LEMMA. The following statements are equivalent.

(1) There is a constant K such that, for every n, $||y|| \leq K ||y||_n$ $(y \in M_n)$;

(2) There is a constant K such that, for every $n, y \in M_n$ and $||y||_n \leq 1$ implies $||y|| \leq K$;

(3) $\sup_n \|P_n\| < \infty$.

Proof. The equivalence of (1) and (2) is obvious.

 $(1) \Rightarrow (3)$. Assuming condition (1), we have

$$||P_n|| = \sup_{||x|| \leq 1} ||P_n(x)|| \leq \sup_{||x|| \leq 1} K ||P_n(x)||_n = K \sup_{||x|| \leq 1} ||P_n(x)||_n.$$

If $||x|| \leq 1$, then

$$||P_n(x)||_n \leq ||P_n(x) - x||_n + ||x||_n \leq 2 ||x||_n \leq 2 ||x|| \leq 2.$$

So $||P_n|| \leq 2K$. Thus (3) holds.

(3) \Rightarrow (2). Let $K = 2 \sup_n ||P_n||$, $y \in M_n$, and $||y||_n \leq 1$. By Lemma 2.2, there exists $x \in X$ with $P_n(x) = y$ and $||x|| \leq 2$. Thus

$$||y|| = ||P_n(x)|| \le ||P_n|| ||x|| \le K.$$

2.4. LEMMA. Consider the following statements.

- (1) $\sup_n \|P_n\| < \infty;$
- (2) $\sup_{n} \|P_{n}(x)\| < \infty$ for every $x \in X$;
- (3) $\lim_{n} ||x P_n(x)|| = 0 \text{ for every } x \in X.$

Then $(1) \Rightarrow (2)$ and $(3) \Rightarrow (2)$.

Suppose, moreover, that $\bigcup_{1}^{\infty} M_n$ is dense in X. Then $(1) \Rightarrow (3)$ and if, in addition, X is complete, $(2) \Rightarrow (1)$. In particular, if $\bigcup_{1}^{\infty} M_n$ is dense and X is complete, then all three statements are equivalent.

Proof. The implications $(1) \Rightarrow (2)$ and $(3) \Rightarrow (2)$ are trivial. For the remainder of the proof, we assume that $\bigcup_{1}^{\infty} M_n$ is dense in X.

(1) \Rightarrow (3). Let $K = \sup_n ||P_n||$, $x \in X$, and $\varepsilon > 0$. Choose $y \in \bigcup_1^\infty M_n$ so that $||x - y|| < \varepsilon (1 + K)^{-1}$. Then $y \in M_n$ for *n* sufficiently large so, for such *n*, using the additivity modulo M_n of P_n ,

$$\|x - P_n(x)\| \le \|x - y\| + \|y - P_n(x)\|$$

= $\|x - y\| + \|P_n(y - x)\|$
< $\varepsilon (1 + K)^{-1} + K\varepsilon (1 + K)^{-1} = \varepsilon$

That is, (3) holds.

Now assume also that X is complete.

 $(2) \Rightarrow (1)$. If (2) holds, define

$$X_k = \{x \in X \mid \sup_n \|P_n(x)\| \leq k\}.$$

Clearly, $X = \bigcup_{k=1}^{\infty} X_k$. By the standard compactness argument that shows that the (usual) metric projection onto a finite dimensional Chebyshev subspace

284

is continuous, one can verify that P_n is $\|\cdot\|$ to $\|\cdot\|_n$ continuous, and hence (using Lemma 2.1 and the equivalence of norms on M_n), P_n is $\|\cdot\|$ to $\|\cdot\|$ continuous. From this fact it follows that X_k is closed. By the Baire Category Theorem, there is an integer k_0 , an $x_0 \in X_{k_0}$, and $\varepsilon > 0$ so that the ball

$$B(x_0, \varepsilon) \equiv \{x \in X \mid ||x - x_0|| < \varepsilon\}$$

is contained in X_{k_0} . By the denseness of $\bigcup_{1}^{\infty} M_n$, we may assume that $x_0 \in M_N$ for some N. We have

$$\sup_{n \in \mathbb{N}} \|P_n(y)\| \leq k_0 \qquad (y \in B(x_0, \varepsilon)).$$

Thus if $n \ge N$ and $y \in B(x_0, \varepsilon)$, then $x_0 \in M_n \cap X_{k_0}$ so $x_0 = P_n(x_0)$ and

$$||P_n(y-x_0)|| = ||P_n(y)-x_0|| \le ||P_n(y)|| + ||x_0|| \le 2k_0.$$

Hence for $n \ge N$ and $z \in X$ with $||z|| < \varepsilon$, $y = z + x_0 \in B(x_0, \varepsilon)$ so

$$||P_n(z)|| = ||P_n(y-x_0)|| \le 2k_0.$$

It follows by homogeneity of P_n that

$$||P_n(u)|| \leq \frac{2k_0}{\varepsilon}$$
 for all $u \in B(0, 1)$.

Thus $||P_n|| \leq 2k_0/\varepsilon$ for $n \ge N$ implies $\sup_n ||P_n|| < \infty$.

Remark. Note that the equivalence of (1) and (2) is a "uniform boundedness" principle for the (generally nonlinear) operators P_n .

Combining Lemmas 2.3 and 2.4 we immediately obtain the main result.

2.5. THEOREM. Let X be a Banach space and suppose $\bigcup_{1}^{\infty} M_n$ is dense in X. Then the following statements are equivalent.

(1) There exists a constant K such that, for each n, $y \in M_n$ and $||y||_n \leq 1$ imply $||y|| \leq K$;

(2) There exists a constant K such that, for each n and each $y \in M_n$, $||y|| \leq K ||y||_n$;

(3) $\sup_n ||P_n(x)|| < \infty$ for every $x \in X$;

- (4) $\sup_n \|P_n\| < \infty;$
- (5) $\lim_{n \to \infty} ||x P_n(x)|| = 0 \text{ for every } x \in X.$

For the following result, let T be a locally compact Hausdorff space and let $C_0(T)$ denote the linear space of all real-valued continuous functions x on

T "vanishing at infinity," i.e., $\{t \in T \mid |x(t)| \ge \varepsilon\}$ is compact for each $\varepsilon > 0$. With the norm $||x|| = \sup\{|x(t)| \mid t \in T\}$, $C_0(T)$ is a Banach space. If T is actually compact, then $C_0(T)$ reduces to the space of all real-valued continuous functions on T, and is also denoted by C(T). Let $(M_n)_{n=1}^{\infty}$ be an increasing sequence of finite dimensional Haar subspaces of $C_0(T)$ whose union $\bigcup_{1}^{\infty} M_n$ is dense in $C_0(T)$. (Recall that an *n* dimensional subspace M of $C_0(T)$ is called a Haar subspace iff each nonzero element of M has at most n-1 zeros. Furthermore, a finite dimensional subspace of $C_0(T)$ is a Haar subspace iff it is a Chebyshev subspace.) For each integer n, let E_n be a finite subset of T which contains at least dim M_n points. For each n we define a seminorm on $C_0(T)$ by

$$||x||_n = \sup\{|x(t)| \mid t \in E_n\}.$$

For a given $x \in C_0(T)$, let $P_n(x)$ denote the *unique* element of M_n which is closest to x relative to the seminorm $\|\cdot\|_n$:

$$||x - P_n(x)||_n = \inf\{||x - y||_n \mid y \in M_n\}.$$

(This makes sense since $M_n|_{E_n}$ is a Haar subspace in $C_0(T)|_{E_n} = C(E_n)$.)

2.6. COROLLARY. The following statements are equivalent.

(1) There is a constant K such that, for each n, $y \in M_n$ and $|y(t)| \leq 1$ for all $t \in E_n$ implies $||y|| \leq K$;

- (2) $\sup_n \|P_n\| < \infty;$
- (3) $\sup_{n} ||P_{n}(x)|| < \infty$ for each $x \in C_{0}(T)$;
- (4) $\lim_{x \to \infty} ||x P_n(x)|| = 0$ for each $x \in C_0(T)$.

Proof. We will exhibit a sequence of finite dimensional subspaces Γ_n of the dual space $C_0(T)^*$ such that for each n and each $x \in C_0(T)$,

$$\sup\{|x(t)| \mid t \in E_n\} = \sup\{|f(x)| \mid f \in \Gamma_n, ||f|| \le 1\},\$$

i.e., $||x||_n = \sup\{|f(x)| | f \in \Gamma_n, ||f|| \le 1\}$. Having done this, the result is then an immediate consequence of Theorem 2.5. Let

$$\Gamma_n = \operatorname{span}\{\delta_t \mid t \in E_n\},\$$

where δ_t denotes the functional "evaluation at t." For each $x \in C_0(T)$, one has

$$\left|\sum_{t_i \in E_n} \alpha_i \delta_{t_i}(x)\right| \leq \sum |\alpha_i| |x(t_i)| \leq \sum |\alpha_i| ||x||_n \leq \sum |\alpha_i| ||x||. \quad (2.6.1)$$

On the other hand, by Urysohn's lemma we can choose $x \in C_0(T)$ with $||x|| \leq 1$ and $x(t_i) = \operatorname{sgn} \alpha_i$ for all $t_i \in E_n$. Thus

$$\left|\sum_{t_i \in E_n} \alpha_i x(t_i)\right| = \sum |\alpha_i|.$$
(2.6.2)

Using relations (2.6.1) and (2.6.2), we get that $\|\sum_{t_i \in E_n} \alpha_i \delta_{t_i}\| = \sum |\alpha_i|$, and

$$\sup\{|f(x)| \mid f \in \Gamma_n, ||f|| \leq 1\}$$

$$= \sup\left\{ \left| \sum \alpha_i x(t_i) \right| \mid t_i \in E_n, \sum |\alpha_i| \leq 1 \right\}$$

$$\leq \sup\{|x(t_i)| \mid t_i \in E_n\}$$

$$\leq \sup\left\{ \left| \sum \alpha_i x(t_i) \right| \mid t_i \in E_n, \sum |\alpha_i| \leq 1 \right\}$$

$$= \sup\{|f(x)| \mid f \in \Gamma_n, ||f|| \leq 1\}.$$

Thus

 $\sup\{|f(x)| \mid f \in \Gamma_n, \|f\| \leq 1\} = \sup\{|x(t)| \mid t \in E_n\}.$

2.7. Remarks. (1) If M_n is an *n* dimensional Haar subspace in C[a, b]and E_n is a subset of [a, b] consisting of *n* points (resp. n + 1 points), then $P_n(x)$ is the unique element in M_n interpolating x on E_n (resp. M_n is a hyperplane in $C(E_n)$). In either case, P_n is linear. By a result of Kharshiladze and Lozinski (cf., e.g., [2; p. 214]) condition (2) of Corollary 2.6 fails. Thus condition (4) also fails. This last remark yields an alternate proof to a result of Curtis [3; Theorem 1] (who stated it in the particular case when T =[-1, 1] and $M_n = \prod_{n=1}^{n-1}$ is the space of polynomials of degree at most n-1).

(2) In the particular case when T = [-1, 1] and $M_n = \prod_{n-1}$, Curtis proved the equivalence of conditions (1) and (4) in Corollary 2.6 [3; Theorem 2].

We next give two "indirect" applications of Theorem 2.5. These applications are indirect because the seminorms are not defined by finite dimensional subspaces Γ_n of the dual space; however, since the validity of Lemma 2.2 and the inequality $||x||_n \leq ||x||$ can be readily verified, Lemma 2.3 and hence Theorem 2.5 are applicable.

2.8. EXAMPLE. Let X = C[0, 1] and $M_n = \prod_{n-1} (n = 2, 3,...)$. For every integer $n \ge 2$, let p = p(n) be the smallest even integer such that for every $y \in M_n \setminus \{0\}$,

$$||y||_p / ||y|| > 1 - 1/n,$$
(2.8.1)

where $||y||_p = \left[\int_0^1 |y(t)|^p dt\right]^{1/p}$. Set $m = m(n) = \frac{1}{2}[(n-1)p+2]$. For every $x \in X$, define

$$\|x\|_{n} = \left[\sum_{i=1}^{m} a_{im} x^{p}(t_{im})\right]^{1/p},$$
(2.8.2)

where $\{t_{1m}, t_{2m}, ..., t_{mm}\}$ are the roots of the *m*th orthogonal polynomial on [0, 1] and the a_{im} (i = 1, 2, ..., m) are the Gaussian integration coefficients. For any $y \in M_n$, we have

$$\|y\|_{p} = \|y\|_{n} \tag{2.8.3}$$

since (2.8.2) is an exact integration formula for all polynomials of degree 2m-1 (>(n-1)p). Since $a_{im} > 0$ and $\sum_{i=1}^{m} a_{im} = 1$, it follows that

$$||x||_n \leq ||x||, \quad x \in X.$$
 (2.8.4)

Given any $y \in M_n$ with $||y||_n \leq 1$, it follows from (2.8.1) and (2.8.3) that $||y|| \leq 2 ||y||_n \leq 2$. Thus Lemma 2.2 holds with x = y. Using this and (2.8.4), it follows that Lemma 2.3 is valid. As mentioned in the preceding paragraph, Theorem 2.5 is now applicable. Thus we conclude: if $P_n(x)$ denotes the best approximation to x from M_n (relative to the seminorm $||\cdot||_n$), then

$$\lim_{n\to\infty} \|x-P_n(x)\|=0, \qquad x\in X.$$

2.9. EXAMPLE. Fix any even integer p. Let X denote the set of all realvalued continuous functions x on [0, 1] with the norm $||x||_p$, where $||x||_p$, M_n , and $||x||_n$ are defined as in Example 2.8. (Note that X is not complete.) However, by an argument similar to that in 2.8 (where here (2.8.1) is replaced by $||y||_n/||y||_p = 1$, $y \in M_n$) we have that Lemmas 2.2, 2.3, and 2.4 are valid. Since $\bigcup_{n=2}^{\infty} M_n$ is dense in X, Lemmas 2.3 and 2.4 implies that $\lim_n ||x - P_n(x)|| = 0$ for all $x \in X$, i.e.,

$$\lim_{n \to \infty} \int_0^1 |x(t) - (P_n x)(t)|^p dt = 0.$$
 (2.9.1)

In the particular case when p = 2, it follows that m = n, $P_n(x)$ is the polynomial of degree n-1 which interpolates to x at the points $t_{1n}, t_{2n}, ..., t_{nn}$, and the Erdös-Turán Theorem [5] results (see also [2; p. 137]).

3. A VARIANT OF THEOREM 2.5

In this section we will consider the case when $\bigcup_{n=1}^{\infty} M_n$ is not dense in X, i.e., $M \equiv \bigcup_n \overline{M_n}$ is a proper closed subspace of X. We will prove a variant of

Theorem 2.5. Then, by means of examples, we will show that each of the hypotheses is essential.

3.1. THEOREM. Let X be a Banach space and let M_n , $\|\cdot\|_n$, and P_n be defined as in Section 2. Suppose that, for every $x \in X$, there is a subsequence $\{n_k\}$ of the natural numbers with

(i) $\lim_{k\to\infty} ||x||_{n_k} = ||x||, x \in X;$

(ii) there exists $x_0 \in M \equiv \overline{\bigcup_{n=1}^{\infty} M_n}$ such that $\lim_{k \to \infty} ||x_0 - P_{n_k}(x)||_{n_k} = 0.$

Then $||x - x_0|| = d(x, M)$. Suppose, in addition,

(iii) one of the statements of Lemma 2.3 holds.

Then $\lim_{k\to\infty} ||x_0 - P_{n_k}(x)|| = 0$ and $\lim_{k\to\infty} ||x - P_{n_k}(x)|| = d(x, M)$.

Proof. Let $y \in M$. Then

$$||x - y|| \ge ||x - y||_{n_k} \ge ||x - P_{n_k}(x)||_{n_k} \ge ||x - x_0||_{n_k} - ||x_0 - P_{n_k}(x)||_{n_k}.$$

Passing to the limit as $k \to \infty$ and using (i) and (ii), we get $||x - y|| \ge ||x - x_0||$. Thus x_0 is a best approximation to x from M, i.e., $||x - x_0|| = d(x, M)$.

Assume, in addition, (iii). Hence there exists a constant K such that, for every n and every $y \in M_n$, $||y|| \leq K ||y||_n$. Hence

$$\begin{aligned} \|x_0 - P_{n_k}(x)\| &\leq \|x_0 - P_{n_k}(x_0)\| + \|P_{n_k}(x_0) - P_{n_k}(x)\| \\ &\leq \|x_0 - P_{n_k}(x_0)\| + K \|P_{n_k}(x_0) - P_{n_k}(x)\|_{n_k} \\ &\leq \|x_0 - P_{n_k}(x_0)\| + K [\|P_{n_k}(x_0) - x_0\|_{n_k} + \|x_0 - P_{n_k}(x)\|_{n_k}] \\ &\leq (1+K) \|x_0 - P_{n_k}(x_0)\| + K \|x_0 - P_{n_k}(x)\|_{n_k}. \end{aligned}$$

By (ii), $||x_0 - P_{n_k}(x)||_{n_k} \to 0$. By Lemma 2.3, $\sup_n ||P_n|| < \infty$ and hence, applying Lemma 2.4 to M instead of X, we deduce that $||x_0 - P_{n_k}(x_0)|| \to 0$. Thus $||x_0 - P_{n_k}(x)|| \to 0$. Finally,

$$d(x, M) \leq ||x - P_{n_k}(x)|| \leq ||x - x_0|| + ||x_0 - P_{n_k}(x)||$$

= $d(x, M) + ||x_0 - P_{n_k}(x)|| \rightarrow d(x, M)$

implies $||x - P_{n_{\nu}}(x)|| \rightarrow d(x, M)$.

3.2. COROLLARY. Suppose that conditions (i), (ii), and (iii) of Theorem 3.1 hold. Then, for each $x \in X$, some subsequence of the sequence $\{P_n(x)\}$ converges (in the norm of X) to a best approximation to x from M.

Kripke [7] has shown that if X is a *finite* dimensional normed linear space, M_0 is a subspace of X, $M_n = M_0$ (n = 1, 2,...), and $\|\cdot\|_n$ is a seminorm on M_n , then condition (i) alone implies the conclusions of Theorem 3.1.

In contrast to this, it is shown in the following examples that *none* of the conditions (i), (ii), or (iii) can be dispensed with in general.

3.3. EXAMPLE. Fix a positive integer N, let $X = \prod_{N}$ (=the polynomials of degree at most N), and $M_n = \prod_{N-1} (n = 1, 2,...)$. Thus $M = \bigcup M_n = \prod_{N-1}$. Let E be a finite subset of [0, 1] such that, for every $x \in X$,

$$||x|| = \sup\{|x(t)| \mid t \in [0, 1]\} \leq 2 |||x|||,$$

where $|||x||| = \sup\{|x(t)| \mid t \in E\}$. Set $||x||_n = |||x|||$ for every *n*. Given $x \in X$ with $0 \le x \le 1$, ||x|| = 1, and $x|_E = 0$, it follows that $P_n(x) = 0$ for all *n*. Let x_0 be the best approximation to x from M over E:

$$||x-x_0||_n = \inf_{y \in M} ||x-y||_n.$$

Thus $x_0 = 0$ and $||x_0 - P_n(x)|| = 0 = ||x_0 - P_n(x)||_n$ for all *n*. But

$$||x - x_0|| = 1 > \frac{1}{2} \ge d(x, M)$$

since the constant function $y = \frac{1}{2}$ in M_n satisfies $||x - y|| = \frac{1}{2}$. Thus the conclusion of Theorem 3.1 fails although conditions (ii) and (iii) hold.

3.4. EXAMPLE. Let

$$X = \{x + \alpha h \mid x \in C[-1, 1], -\infty < \alpha < \infty\},\$$

where h(t) = 1 if $0 \le t \le 1$ and h(t) = 0 if $-1 \le t < 0$. Endow X with the supremum norm. Let $E = \{t_i \mid i = 1, 2, ...\}$ be a dense sequence in [-1, 1] with $t_1 = -1, t_2 = 0$, and $t_3 = 1$. For each $n \ge 3$, define

$$E_n = \{t_i \mid i = 1, 2, ..., n\} = \{t_i^{(n)} \mid i = 1, 2, ..., n\},\$$

where the $t_i^{(n)}$ are ordered: $t_1^{(n)} < t_2^{(n)} < \cdots < t_n^{(n)}$. Let M_n be the *n* dimensional subspace of X consisting of those functions which are linear in each of the intervals $[t_i^{(n)}, t_{i+1}^{(n)}]$ (i = 1, 2, ..., n-1) and continuous on [-1, 1]. Clearly, $\bigcup_{3}^{\infty} M_n$ is not dense in X. Define the seminorm $||x||_n = \sup\{|x(t)| \mid t \in E_n\}$. For any $x \in X$, the piecewise linear function $y \in M_n$ which agrees with x on E_n satisfies $||x - y||_n = 0$. Thus $P_n(x)(t) = x(t)$ for all $t \in E_n$. For the function h, $||h - P_n(h)|| = 1$ for every n while $d(h, M) = \frac{1}{2}$. Hence the conclusion of Theorem 3.1 fails although conditions (i) and (iii) hold.

3.5. EXAMPLE. Let X = C[-1, 1], $M_n = \prod_{n=1}^{n-1} (n = 1, 2,...)$, and let $E = \{t_i \mid i = 1, 2,...\}$ be a dense sequence in [-1, 1]. Define $E_n = \{t_i \mid i = 1, 2,..., n\}$ and $||x||_n = \sup\{|x(t)| \mid t \in E_n\}$ (n = 1, 2,...). Clearly, M_n is $|| \cdot ||_n$ -Chebyshev. In fact, $P_n(x) \in M_n$ interpolates to x on E_n . Since $M = \bigcup_{i=1}^{\infty} M_n = C[0, 1]$, we have $x_0 = x$ for every $x \in X$. By the result of Faber mentioned in the Introduction, the conclusion of Theorem 3.1 fails for some x. However, conditions (i) and (ii) hold.

References

- 1. S. BERNSTEIN, Sur une modification de la formule d'interpolation de Lagrange, Comm. Soc. Math. Kharkow Inst. Sci. Math. Ukr. 5 (1932), 49-57.
- 2. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- P. C. CURTIS, JR., Convergence of approximating polynomials, Proc. Amer. Math. Soc. 13 (1962), 385-387.
- 4. N. DUNFORD AND J. T. SCHWARTZ, "Linear Operators, Part I," Interscience, New York, 1958.
- 5. P. ERDÖS AND P. TURÁN, On interpolation, Ann. of Math. 38 (1937), 142-155.
- 6. G. FABER, Uber die interpolatorische Darstellung Stetiger Funktionen, Uber. Deutsch. Math. Verein. 23 (1914), 197-210.
- 7. B. R. KRIPKE, Best approximation with respect to nearby norms, Numer. Math. 6 (1964), 103-105.