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1. INTRODUCTION

Curtis [3] has considered the following problem. For each positive integer
n, let En be a finite subset of the closed interval [-1, 1] containing at least n
points. For each real-valued continuous function x on [-1,1], let Pn(x)
denote the unique polynomial of degree at most n - 1 which best approx­
imates x uniformly over the set En. Letting Ilxll = sup {I x(t)1 1-1 ~ t ~ I},
Curtis's main theorem states that the following two conditions are
equivalent:

(1) II x - Pn(x)ll-+ 0 for each x continuous on [-1, 1];

(2) There exists a constant K such that, for each n = 1,2,..., if P is
polynomial of degree at most n - 1 and Ip(t)1 ~ 1 for all tEEn' then
Ilpll~K.

A classical result of Faber [6] states that if each En contains exactly n
points, then (1) fails for some x. Curtis [3; Theorem 1] shows that (1) also
fails if each En contains at most n + 1 points. On the other hand, a result of
Bernstein [1; pp. 55-57] states that if A. > 1 is fixed and mn > A.n for every n,
then a sequence (En) of subsets of [-1, 1], with En containing mn points, can
be chosen so that (2) is satisfied.

It is the purpose of this note to present a generalization of Curtis's
theorem to an arbitrary Banach space setting (Theorem 2.5). It is interesting
to note that this theorem is a type of "uniform boundedness" principle,
except that is applies to a certain sequence of (generally nonlinear) metric
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projections. One consequence of this result is the Erdos-Turan Theorem [5]
which states that a certain sequence of interpolating polynomials to a given
continuous function on [0, 1] converges, in the L 2-norm, to the function
(Example 2.9). In Section 3, a variant of Theorem 2.5 is established
(Theorem 3.1). This theorem is also related to one of Kripke [7] which states
that to find a best approximation from a finite dimensional subspace of a
normed linear space X to a given element in X, it is possible to replace this
by the (often easier) problem of finding best approximations relative to a
sequence of seminorms II· Ilk on X with II· Ilk --> 11·11. Several examples are
given to show that the hypotheses in Theorem 3.1 cannot be dropped.

2. A CONVERGENCE THEOREM

In this section, unless otherwise stated, we assume the following
hypotheses:

(i) X is a normed linear space;

(ii) (Mn ) is an increasing sequence of finite dimensional subspaces of
X;

(iii) (Tn) is a sequence of finite dimensional subspaces of the dual
space X*;

(iv) for each positive integer n, a seminorm on X is defined by

Ilxlln= sup{l/(x)11 I E Tn' IIIII ~ I};

(v) each M n is II· lin-Chebyshev, i.e., for each x E X there is a unique
point Pn(x) E Mn such that

The mapping x f--+ Pn(x) is called the metric projection onto M n relative to
the seminorm II ·lln' It is easy to verify that Pn is homogeneous, additive
modulo Mn, and idempotent (i.e., Pn(ax) = aPn(x), Pn(x + y) = Pn(x) + y
for all x E X, y E Mn, and P~ = Pn), but Pn is not linear in general. The
norm of Pn is defined by

IIPnl1 = sup{IIPn(x)111 x EX, Ilxll ~ I}.

By the homogeneity of Pn , it follows that IIPn(x)11 ~ IIPnllllxl1 for every x.

2.1. LEMMA. The seminorm II .lin is actually a norm on Mn' That is,
yEMn and Ilylln=O implies y=O.
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Proof Suppose Ilyiln = 0 for some y E M n. Then
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By uniqueness of best approximations, Pn(x) + Y = Pn(x), i.e., y = O. I

The next lemma is another way of stating that each mapping Pn is an
"open mapping" with the same "openness constant" (viz. 2).

2.2. LEMMA. For each positive integer n and each y E M n with II ylln ~ 1,
there exists an x E X with Ilxll ~ 2 and PAx) = y.

Proof Given y E M n with Ilyiln ~ 1, define G = Gy on Tn by

G(f) =f(y)

Then G is linear and

sup IG(f)1 = sup If(y)1 = Ilyiln ~ 1.
fErn fErn

Itill = I lIill = 1

Thus GE r: and II GII ~ 1. By the Hahn-Banach theorem Ghas a norm­
preserving extension (also denoted by G) in X**. Since Tn is finite dimen­
sional, Helly's theorem (see, e.g., [4; pp. 86,87)) implies that there is an
x E X withf(x) = G(I) for fE Tn' and Ilxll ~ IIGII + 1 ~ 2. Hence

f(x - y) = f(x) - fey) = G(f) - G(f) = 0

for allfETn. Thus Ilx- ylln=O and hencey=Pn(x). I
From Lemma 2.1 and the fact that all norms on a finite dimensional space

are equivalent, it follows that there is a constant K n such that

The next result gives a condition equivalent to when a single constant works
for every n.

2.3. LEMMA. The following statements are equivalent.

(1) There is a constant K such that, for every n, Ilyll~Kllylln

(y E M n);

(2) There is a constant K such that,for every n, y E M n and II Ylln ~ 1
implies II yll ~ K;

(3) sUPn IIPnl1 < 00.

Proof. The equivalence of (1) and (2) is obvious.
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(1) =? (3). Assuming condition (1), we have

IIPnl1 = sup IIPn(x)11 ~ sup K IIPn(x)lln = K sup IIPn(x)lln'
Ilxli < I IIxll < I Ilxll< I

If II xII ~ 1, then

IIPn(x)lln ~ IIPn(x) - xlln+ Ilxll n~ 211xll n~ 211xll ~ 2.

So IIPnl1 ~ 2K. Thus (3) holds.

(3) =? (2). Let K = 2 SUPn IIPnII, y E M n , and" ylln ~ 1. By Lemma 2.2,
there exists x E X with Pn(x) = y and Ilxll ~ 2. Thus

II yll = IIPn(x)11 ~ IIPnllllxl1 ~ K. I

2.4. LEMMA. Consider the following statements.

(1) sUPn IIPnl1 < 00;

(2) sUPn IIPn(x)11 < 00 for every x E X;

(3) limn Ilx - Pn(x)11 = 0 for every x EX.

Then (1) =? (2) and (3) =? (2).
Suppose, moreover, that U~ M n is dense in X. Then (1)=? (3) and if, in

addition, X is complete, (2) =? (1). In particular, if U~ M n is dense and X is
complete, then all three statements are equivalent.

Proof The implications (1) =? (2) and (3) =? (2) are trivial.
For the remainder of the proof, we assume that U~M n is dense in X.

(1) =? (3). Let K = sUPn IIPnll, x E X, and e > O. Choose y E U~ M n

so that Ilx- yll < e(1 +K)-I. Then yEMn for n sufficiently large so, for
such n, using the additivity modulo M n of Pn,

Ilx-Pn(x)11 ~ Ilx- yll + Ily-Pn(x)11

= Ilx - yll + IIPn(y - x)11

< e(1 +K)-I +Ke(1 +K)-I = e.

That is, (3) holds.
Now assume also that X is complete.

(2)=? (1). If (2) holds, define

X k = {x E X Isup IIPn(x)11 ~ k}.
n

Clearly, X = U~ X k • By the standard compactness argument that shows that
the (usual) metric projection onto a finite dimensional Chebyshev subspace



APPROXIMATING SUBSPACES 285

is continuous, one can verify that Pn is 11·11 to II· lin continuous, and hence
(using Lemma 2.1 and the equivalence of norms on M n)' Pn is 11·11 to 11·11
continuous. From this fact it follows that X k is closed. By the Baire Category
Theorem, there is an integer ko, an XoE X k , and e >°so that the ballo

B(xo' e) == {x E Xlllx-xoll < e}

is contained in X ko By the denseness of U~ M n , we may assume that
X o E MN for some N. We have

(y E B(xo' e)).

Thus if n ~ Nand y E B(xo' e), then X oE M nnxko so X o= Pn(xo) and

Hence for n ~ Nand z E X with II z II < e, y = z +XoE B(xo, e) so

II Pn(z )11 = II Pn(Y - xo)11 ~ 2ko·

It follows by homogeneity of Pn that

for all u E B(O, 1).

Thus IIPnl1 ~ 2ko/e for n ~ N implies SUPn IIPnl1 < 00. I

Remark. Note that the equivalence of (1) and (2) is a "uniform boun­
dedness" principle for the (generally nonlinear) operators Pn.

Combining Lemmas 2.3 and 2.4 we immediately obtain the main result.

2.5. THEOREM. Let X be a Banach space and suppose U~ M n is dense
in X. Then the following statements are equivalent.

(1) There exists a constant K such that, for each n, Y E M nand
II ylln ~ 1 imply II yll ~ K;

(2) There exists a constant K such that, for each n and each y E Mn,
lIyll ~Kllylln;

(3) SUPn IIPn(x)11 < 00 for every x E X;

(4) sUPn IIPnl1 < 00;

(5) limn Ilx - Pn(x)11 = ofor every x EX.

For the following result, let T be a locally compact Hausdorff space and
let Co(T) denote the linear space of all real-valued continuous functions x on
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T "vanishing at infinity," i.e., {t E Til x(t)1 ~ e} is compact for each e > O.
With the norm Ilxll = sup{lx(t)11 t E T}, Co(T) is a Banach space. If Tis
actually compact, then Co(T) reduces to the space of all real-valued
continuous functions on T, and is also denoted by C(T). Let (Mn)~= 1 be an
increasing sequence of finite dimensional Haar subspaces of Co(T) whose
union U~ M n is dense in Co(T). (Recall that an n dimensional subspace M
of Co(T) is called a Haar subspace itT each nonzero element of M has at
most n - 1 zeros. Furthermore, a finite dimensional subspace of Co(T) is a
Haar subspace iff it is a Chebyshev subspace.) For each integer n, let En be
a finite subset of T which contains at least dim M n points. For each n we
define a seminorm on Co(T) by

Ilxll n = sup{lx(t)11 tEEn}·

For a given x E Co(T), let Pn(x) denote the unique element of M n which is
closest to x relative to the seminorm II· lin:

(This makes sense since MnIE is a Haar subspace in Co(T) IE = C(En).)
n n

2.6. COROLLARY. The following statements are equivalent.

(1) There is a constant K such that, for each n, y E M n and Iy(t)1 :::;; 1
for all tEEn implies II yll:::;; K;

(2) sUPn IIPnl1 < 00;

(3) sUPn IIPn(x)11 < 00 for each x E Co(T);

(4) limn Ilx - Pn(x)11 = 0 for each x E Co(T).

Proof We will exhibit a sequence of finite dimensional subspaces Tn of
the dual space Co(T)* such that for each n and each x E Co(T),

sup{lx(t)11 tEEn} = sup{lf(x)11 f E Tn' Ilfll:::;; I},

i.e., Ilxlln= sup{lf(x)11 f E Tn' Ilfll :::;; I}. Having done this, the result is then
an immediate consequence of Theorem 2.5. Let

where ()t denotes the functional "evaluation at t." For each x E Co(T), one
has
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On the other hand, by Urysohn's lemma we can choose x E Co(T) with
Ilxll ~ 1 and x(ti) = sgn ai for all ti E En. Thus

(2.6.2)

Using relations (2.6.1) and (2.6.2), we get that IILtEE aiotll = L lail, and
I n I

sup{l/(x)11 I E Tn' I1III ~ I}

= sup llL:aix(tJ II tiEEn'Llail~ 11

~ sup{lx(tJII t i E En}

~sup lILaix(tJlltiEEn'Llail~11

= sup{l/(x)11 I E Tn' IIIII ~ I}.
Thus

sup{l/(x)11 I E Tn' IIIII ~ I} = sup{lx(t)11 tEEn}' I

2.7. Remarks. (1) If M n is an n dimensional Haar subspace in C[a, b]
and En is a subset of [a, b] consisting of n points (resp. n + 1 points), then
Pn(x) is the unique element in M n interpolating x on En (resp. M n is a hyper­
plane in C(En». In either case, Pn is linear. By a result of Kharshiladze and
Lozinski (cr., e.g., [2; p. 214]) condition (2) of Corollary 2.6 fails. Thus
condition (4) also fails. This last remark yields an alternate proof to a result
of Curtis [3; Theorem 1] (who stated it in the particular case when T =
[-1, 1] and M n = Dn-I is the space of polynomials of degree at most
n - 1).

(2) In the particular case when T = [-1, 1] and M n = Dn-I> Curtis
proved the equivalence of conditions (1) and (4) in Corollary 2.6 [3;
Theorem 2].

We next give two "indirect" applications of Theorem 2.5. These
applications are indirect because the seminorms are not defined by finite
dimensional subspaces Tn of the dual space; however, since the validity of
Lemma 2.2 and the inequality IIxll n ~ Ilxll can be readily verified, Lemma 2.3
and hence Theorem 2.5 are applicable.

2.8. EXAMPLE. Let X = ClO, 1] and M n = Dn-I (n = 2, 3,... ). For every
integer n ~ 2, let p = pen) be the smallest even integer such that for every
y E Mn\{O},

640/32/4-3

II yllp/ll yll > 1 - lin, (2.8.1)
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where IIYllp=[f~ly(t)IPdtPIP. Set m=m(n)=1[(n-l)p+2]. For every
x E X, define

(2.8.2)

where {tim' t2m ,..., tmml are the roots of the mth orthogonal polynomial on
[0, 1] and the aim (i = 1,2,..., m) are the Gaussian integration coefficients.
For any y E M n , we have

II Yllp = II ylln (2.8.3)

since (2.8.2) is an exact integration formula for all polynomials of degree
2m - 1 (>(n - l)p). Since aim> 0 and L~I aim = 1, it follows that

Ilxlln~lIxll, xEX. (2.8.4)

Given any yEMn with Ilylln~ 1, it follows from (2.8.1) and (2.8.3) that
II yll ~ 211 ylln ~ 2. Thus Lemma 2.2 holds with x = y. Using this and (2.8.4),
it follows that Lemma 2.3 is valid. As mentioned in the preceding paragraph,
Theorem 2.5 is now applicable. Thus we conclude: if Pn(x) denotes the best
approximation to x from M n (relative to the seminorm 1I·lln)' then

lim II x - Pn(x)11 = 0,
n....r:1J

xEX.

2.9. EXAMPLE. Fix any even integer p. Let X denote the set of all real­
valued continuous functions x on (0,1] with the norm IIxllp , where Ilxllp ,

Mn , and Ilxlln are defined as in Example 2.8. (Note that X is not complete.)
However, by an argument similar to that in 2.8 (where here (2.8.1) is
replaced by II ylln/II Yllp = 1, y E M n) we have that Lemmas 2.2, 2.3, and 2.4
are valid. Since U~=2 Mn is dense in X, Lemmas 2.3 and 2.4 implies that
limn Ilx - Pn(x)11 = 0 for all x E X, i.e.,

(2.9.1)

In the particular case when p = 2, it follows that m = n, Pn(x) is the
polynomial of degree n - 1 which interpolates to x at the points
tin' t2n ,..., tnn , and the Erdos-Turan Theorem (5] results (see also
[2; p. 137]).

3. A VARIANT Of THEOREM 2.5

In this section we will consider the case when U~= I M n is not dense in X,
i.e., M =. Un M n is a proper closed subspace of X. We will prove a variant of
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Theorem 2.5. Then, by means of examples, we will show that each of the
hypotheses is essential.

thatsuch

3.1. THEOREM. Let X be a Banach space and let Mn, II· lin' and Pn be
defined as in Section 2. Suppose that, for every x E X, there is a subsequence
jnd of the natural numbers with

(i) limk-->oo Ilxllnk = Ilxll, x E X;

(ii) there exists XoE M=. U;;:'=I M n
limk-->oo II Xo- Pn/x)llnk = O.

Then II x - X oII = d(x, M).
Suppose, in addition,

(iii) one of the statements of Lemma 2.3 holds.

Then limk-->oo Ilxo- Pnk(x)11 = 0 and limk-->oo Ilx - Pn/x)11 = d(x, M).

Proof Let y E M. Then

Passing to the limit as k -4 00 and using (i) and (ii), we get II x - y II ~
II x - XoII. Thus Xo is a best approximation to x from M, i.e., II x - XoII =
d(x,M).

Assume, in addition, (iii). Hence there exists a constant K such that, for
every n and every y E Mn, II yll ~ K II ylln' Hence

Ilxo- Pn/x)11 ~ Ilxo- Pn/xo)11 + IIPn/xo) - Pnk(x)1I

~ II Xo- Pn/xo)11 +K liPnk(xo) - Pnk(x)llnk

~ Ilxo- Pn/xo)11 +K[lIPnk(xo) - xoll nk + Ilxo- PnJx)llnJ

~ (1 +K) Ilxo- PnJxo)11 +K Ilxo- Pnk(x)llnk'

By (ii), Ilxo- Pnk(x)llnk -4 O. By Lemma 2.3, sUPn IIPnl1 < 00 and hence,
applying Lemma 2.4 to M instead of X, we deduce that II Xo- Pn/xo)ll-4 O.
Thus Ilxo- Pn/x)ll-4 O. Finally,

d(x, M) ~ Ilx -Pnk(x)11 ~ Ilx - xoll + Ilxo- Pnk(x)11

= d(x, M) + IIxo- Pnk(x)114 d(x, M)

implies IIx - Pn/x)114 d(x, M). I

3.2. COROLLARY. Suppose that conditions (i), (ii), and (iii) of
Theorem 3.1 hold. Then, for each x E X, some subsequence of the sequence
jPn(x)} converges (in the norm ofX) to a best approximation to x from M.
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Kripke [7] has shown that if X is a finite dimensional normed linear
space, M o is a subspace of X, M n = M o (n = 1,2,... ), and II· lin is a seminorm
on M n , then condition (i) alone implies the conclusions of Theorem 3.1.

In contrast to this, it is shown in the following examples that none of the
conditions (i), (ii), or (iii) can be dispensed with in general.

3.3. EXAMPLE. Fix a positive integer N, let X = ON (=the polynomials
of degree at most N), and M n = ON-I (n = 1,2,... ). Thus M = ITM;;"=
ON-I' Let E be a finite subset of [0, 1] such that, for every x EX,

Ilxll=sup{lx(t)lltE [0, lJl<211Ixlll,

where III xiii = sup{lx(t)11 tEE}. Set Ilxlln = Illxlll for every n. Given x E X
with 0 < x < 1, IIxll = 1, and x IE = 0, it follows that Pn(x) = 0 for all n. Let
X o be the best approximation to x from Mover E:

Ilx - xoll n= inf Ilx - ylln'
yeM

Thus xo=O and Ilxo-Pn(x)1I =0= IIxo-Pn(x)/ln for all n. But

II x - X OII = 1 > i ~ d(x, M)

since the constant function y =1 in M n satisfies II x - y II = i. Thus the
conclusion of Theorem 3.1 fails although conditions (ii) and (iii) hold.

3.4. EXAMPLE. Let

X = {x + ah Ix E C[-I, I], -00 <a < 00 },

where h(t) = I if 0 < t < I and h(t) = 0 if -1 < t < O. Endow X with the
supremum norm. Let E = {t; I i = 1,2,... } be a dense sequence in [-1, 1J with
t l = -1, t2 = 0, and t) = 1. For each n~ 3, define

En = {t i Ii = 1,2,..., n} = {tjn) I i = 1,2,... , n},

where the tjnl are ordered: t\nl < t~n) < ... < t~n). Let M nbe the n dimensional
subspace of X consisting of those functions which are linear in each of the
intervals [tjn), tj~\] (i = 1, 2,..., n - I) and continuous on [-1, 1]. Clearly,
Uf'Mn is not dense in X. Define the seminorm Ilxli n= sup{lx(t)11 tEEn}'
For any x E X, the piecewise linear function y E M n which agrees with x on
En satisfies IIx-ylln=O. Thus Pn(x)(t)=x(t) for all tEEn' For the
function h, Ilh-Pn(h)ll=l for every n while d(h,M)=i. Hence the
conclusion of Theorem 3. I fails although conditions (i) and (iii) hold.
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3.5. EXAMPLE. Let X = C[-I, I], M n = On-I (n = 1,2,... ), and let E =
{t; Ii = 1,2,... } be a dense sequence in [-1,1]. Define En = {t; Ii = 1,2,... , n}
and Ilxll n= sup{lx(t)11 tEEn} (n = 1,2,... ). Clearly, M n is II· lin-Chebyshev.
In fact, Pn(x) E Mn interpolates to x on En' Since M = Uy:' M n= C[O, 1], we
have X o = x for every x EX. By the result of Faber mentioned in the
Introduction, the conclusion of Theorem 3.1 fails for some x. However,
conditions (i) and (ii) hold.
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